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1.1 Elementary Counting Principles

We begin by collecting a few simple rules that, though obvious, lie

at the root of all combinatorial counting. In fact, they are so obvious

that they do not need a proof.

Rule of Sum. If S =
⋃t
i=1 Si is a union of disjoint sets Si, then |S| =

∑t
i=1 |Si|.

In applications, the rule of sum usually appears in the following

form: we classify the elements of S according to a set of properties

ei (i = 1, . . . , t) that preclude each other, and set Si = {x ∈ S :

x has ei}.

The sum rule is the basis for most recurrences. Consider the follow-

ing example. A set X with n elements is called an n-set. Denote by

S =
(

X
k

)

the family of all k-subsets of X. Thus |S| =
(

n
k

)

, where
(

n
k

)

is the usual binomial coefficient. For the moment
(

n
k

)

is just a sym-

bol, denoting the size of
(

X
k

)

. Let a ∈ X. We classify the members of

S as to whether they do or do not contain a: S1 = {A ∈ S : a ∈ A},

S2 = {A ∈ S : a %∈ A}. We obtain all sets in S1 by combining all

(k−1)-subsets of X.a with a; thus |S1| =
(

n−1
k−1

)

. Similarly, S2 is the

family of all k-subsets of X.a: |S2| =
(

n−1
k

)

. The rule of sum yields

therefore the Pascal recurrence for binomial coefficients
(

n

k

)

=

(

n− 1

k− 1

)

+

(

n− 1

k

)

(n ≥ k ≥ 1)

with initial value
(

n
0

)

= 1.

Note that we obtain this recurrence without having computed the

binomial coefficients.

Rule of Product. If S =
∏t

i=1 Si is a product of sets, then |S| =
∏t

i=1 |Si|.

S consists of all t-tuples (a1, a2, . . . , at), ai ∈ Si, and the sets Si are

called the coordinate sets .
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Example. A sequence of 0’s and 1’s is called a word over {0, 1},

and the number of 0’s and 1’s the length of the word. Since any co-

ordinate set Si has two elements, the product rule states that there

are 2n n-words over {0, 1}. More generally, we obtain r n words if

the alphabet A contains r elements. We then speak of n-words over

the alphabet A.

Rule of Bijection. If there is a bijection between S and T , then |S| =

|T |.

The typical application goes as follows: Suppose we want to count

S. If we succeed in mapping S bijectively onto a set T (whose size t

is known), then we can conclude that |S| = t.

Example. A simple but extremely useful bijection maps the power-

set 2X of an n-set X, i.e., the family of all subsets of X, onto the n-

words over {0, 1}. Index X = {x1, x2, . . . , xn} in any way, and map

A ⊆ X to (a1, a2, . . . , an) where ai = 1 if xi ∈ A and ai = 0 if xi &∈

A. This is obviously a bijection, and we conclude that |2X| = 2n.

The word (a1, . . . , an) is called the incidence vector or characteristic

vector of A.

The rule of bijection is the source of many intriguing combinatorial

problems. We will see several examples in which we deduce by alge-

braic or other means that two sets S and T have the same size. Once

we know that |S| = |T |, there exists, of course, a bijection between

these sets. But it may be and often is a challenging problem to find

in the aftermath a “natural” bijection based on combinatorial ideas.

Rule of Counting in Two Ways. When two formulas enumerate

the same set, then they must be equal.

This rule sounds almost frivolous, yet it often reveals very interest-

ing identities. Consider the following formula:

n∑

i=1

i =
(n + 1)n

2
. (1)

We may, of course, prove (1) by induction, but here is a purely com-

binatorial argument. Take an (n+1)×(n+1) array of dots, e.g., for

n = 4:
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The diagram contains (n + 1)2 dots. But there is another way to

count the dots, namely by way of diagonals, as indicated in the fig-

ure. Clearly, both the upper and lower parts account for
∑n

i=1 i dots.

Together with the middle diagonal this gives 2
∑n

i=1 i + (n + 1) =

(n+ 1)2, and thus
∑n

i=1 i =
(n+1)n

2 .

We even get a bonus out of it: the sum
∑n

i=1 i enumerates another

quantity, the family S of all pairs in the (n + 1)-set {0,1,2, . . . , n}.

Indeed, we may partition S into disjoint sets Si according to the

larger element i, i = 1, . . . , n. Clearly, |Si| = i, and thus by the sum

rule |S| =
∑n

i=1 i. Hence we have the following result: the number

of pairs in an n-set is
(

n
2

)

=
n(n−1)

2 .

The typical application of the rule of counting in two ways is to

consider incidence systems. An incidence system consists of two

sets S and T together with a relation I. If aIb, a ∈ S, b ∈ T , then

we call a and b incident. Let d(a) be the number of elements in T

that are incident to a ∈ S, and similarly d(b) for b ∈ T . Then

∑

a∈S

d(a) =
∑

b∈T

d(b) .

The equality becomes obvious when we associate to the system its

incidence matrix M . Let S = {a1, . . . , am}, T = {b1, . . . , bn}, then

M = (mij) is the (0,1)-matrix with

mij =

{

1 if aiIbj ,

0 otherwise.

The quantity d(ai) is then the i-th row sum
∑n

j=1mij , d(bj) is the

j-th column sum
∑m

i=1mij . Thus we count the total number of 1’s

once by row sums and the other time columnwise.

Example. Consider the numbers 1 to 8, and set mij = 1 if i di-

vides j, denoted i | j, and 0 otherwise. The incidence matrix of this

divisor relation looks as follows, where we have omitted the 0’s:
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1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1 1 1 1

3 1 1

4 1 1

5 1

6 1

7 1

8 1

The j-th column sum is the number of divisors of j, which we de-

note by t(j) thus, e.g., t(6) = 4, t(7) = 2. Let us ask how many

divisors a number from 1 to 8 has on average. Hence we want to

compute t(8) =
1
8

∑8
j=1 t(j). In our example t(8) =

5
2 , and we de-

duce from the matrix that

n 1 2 3 4 5 6 7 8

t(n) 1
3
2

5
3 2 2

7
3

16
7

5
2

How large is t(n) for arbitrary n? At first sight this appears hope-

less. For prime numbers p we have t(p) = 2, whereas for powers

of 2, say, an arbitrarily large value t(2k) = k + 1 results. So we

might expect that the function t(n) shows an equally erratic be-

havior. The following beautiful application of counting in two ways

demonstrates that quite the opposite is true!

Counting by columns we get
∑n

j=1 t(j). How many 1’s are in row i?

They correspond to the multiples of i, 1 · i,2 · i, . . . , and the last

multiple is ⌊
n
i ⌋i. Our rule thus yields

t(n) =
1

n

n∑

j=1

t(j) =
1

n

n∑

i=1

⌊
n

i
⌋ ∼

1

n

n∑

i=1

n

i
=

n∑

i=1

1

i
,

where the error going from the second to the third sum is less than

1. The last sum Hn =
∑n

i=1
1
n is called the n-th harmonic num-

ber. We know from analysis (by approximating logx =
∫x
1

1
t dt) that

Hn ∼ logn, and obtain the unexpected result that the divisor func-

tion, though locally erratic, behaves on average extremely regularly:

t(n) ∼ logn.

You will be asked in the exercises and in later chapters to pro-

vide combinatorial proofs of identities or recurrences. Usually, this
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means a combination of the elementary methods we have discussed

in this section.

Exercises

1.1 We are given t disjoint sets Si with |Si| = ai. Show that the number

of subsets of S1∪ . . .∪St that contain at most one element from each Si is

(a1+1)(a2+1) · · · (at +1). Apply this to the following number-theoretic

problem. Let n = p
a1

1 p
a2

2 · · ·p
at

t be the prime decomposition of n then

t(n) =
∏t

i=1(ai + 1). Conclude that n is a perfect square precisely when

t(n) is odd.

⊲ 1.2 In the parliament of some country there are 151 seats filled by 3

parties. How many possible distributions (i, j, k) are there that give no

party an absolute majority?

1.3 Use the sum rule to prove
∑n

k=0 2
k = 2n+1 − 1, and to evaluate

∑n
k=1(n − k)2k−1.

1.4 Suppose the chairman of the math department stipulates that every

student must enroll in exactly 4 of 7 offered courses. The teachers give

the number in their classes as 51,30,30,20,25,12, and 18, respectively.

What conclusion can be drawn?

⊲ 1.5 Show by counting in two ways that
∑n

i=1 i(n− i) =
∑n

i=1

(

i
2

)

=
(

n+1
3

)

.

* * *

1.6 Join any two corners of a convex n-gon by a chord, and let f(n)
be the number of pairs of crossing chords, e.g., f(4) = 1, f(5) = 5.

Determine f(n) by Pascal’s recurrence. The result is very simple. Can

you establish the formula by a direct argument?

1.7 In how many ways can one list the numbers 1,2, . . . , n such that

apart from the leading element the number k can be placed only if either

k−1 or k+1 already appears? Example: 324516, 435216, but not 351246.

⊲ 1.8 Let f(n, k) be the number of k-subsets of {1,2, . . . , n} that do not

contain a pair of consecutive integers. Show that f(n, k) =
(

n−k+1
k

)

, and

further that
∑n

k=0 f(n, k) = Fn+2 (Fibonacci number).

1.9 Euler’s ϕ-function is ϕ(n) = #{k : 1 ≤ k ≤ n, k relatively prime to

n}. Use the sum rule to prove
∑

d|n ϕ(d) = n.

1.10 Evaluate
∑n

i=1 i2 and
∑n

i=1 i3 by counting configurations of dots as

in the proof of
∑n

i=1 i =
n(n+1)

2
.


