## **1** Fundamental Coefficients

## 1.1 Elementary Counting Principles

We begin by collecting a few simple rules that, though obvious, lie at the root of all combinatorial counting. In fact, they are so obvious that they do not need a proof.

**Rule of Sum.** If  $S = \bigcup_{i=1}^{t} S_i$  is a union of disjoint sets  $S_i$ , then  $|S| = \sum_{i=1}^{t} |S_i|$ .

In applications, the rule of sum usually appears in the following form: we classify the elements of *S* according to a set of properties  $e_i$  (i = 1,...,t) that preclude each other, and set  $S_i = \{x \in S : x \text{ has } e_i\}$ .

The sum rule is the basis for most recurrences. Consider the following example. A set *X* with *n* elements is called an *n*-set. Denote by  $S = \binom{X}{k}$  the family of all *k*-subsets of *X*. Thus  $|S| = \binom{n}{k}$ , where  $\binom{n}{k}$  is the usual binomial coefficient. For the moment  $\binom{n}{k}$  is just a symbol, denoting the size of  $\binom{X}{k}$ . Let  $a \in X$ . We classify the members of *S* as to whether they do or do not contain  $a: S_1 = \{A \in S : a \in A\}$ ,  $S_2 = \{A \in S : a \notin A\}$ . We obtain all sets in  $S_1$  by combining all (k-1)-subsets of  $X \setminus a$  with *a*; thus  $|S_1| = \binom{n-1}{k-1}$ . Similarly,  $S_2$  is the family of all *k*-subsets of  $X \setminus a: |S_2| = \binom{n-1}{k}$ . The rule of sum yields therefore the *Pascal recurrence* for binomial coefficients

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \quad (n \ge k \ge 1)$$

with initial value  $\binom{n}{0} = 1$ .

Note that we obtain this recurrence without having computed the binomial coefficients.

**Rule of Product.** If  $S = \prod_{i=1}^{t} S_i$  is a product of sets, then  $|S| = \prod_{i=1}^{t} |S_i|$ .

*S* consists of all *t*-tuples  $(a_1, a_2, ..., a_t)$ ,  $a_i \in S_i$ , and the sets  $S_i$  are called the *coordinate sets*.

**Example.** A sequence of 0's and 1's is called a *word* over  $\{0, 1\}$ , and the number of 0's and 1's the *length* of the word. Since any coordinate set  $S_i$  has two elements, the product rule states that there are  $2^n$  *n*-words over  $\{0, 1\}$ . More generally, we obtain  $r^n$  words if the alphabet *A* contains *r* elements. We then speak of *n*-words over the *alphabet A*.

**Rule of Bijection.** *If there is a bijection between S and T, then* |S| = |T|.

The typical application goes as follows: Suppose we want to count *S*. If we succeed in mapping *S* bijectively onto a set *T* (whose size *t* is known), then we can conclude that |S| = t.

**Example.** A simple but extremely useful bijection maps the powerset  $2^X$  of an *n*-set *X*, i.e., the family of *all* subsets of *X*, onto the *n*-words over  $\{0, 1\}$ . Index  $X = \{x_1, x_2, ..., x_n\}$  in any way, and map  $A \subseteq X$  to  $(a_1, a_2, ..., a_n)$  where  $a_i = 1$  if  $x_i \in A$  and  $a_i = 0$  if  $x_i \notin A$ . This is obviously a bijection, and we conclude that  $|2^X| = 2^n$ . The word  $(a_1, ..., a_n)$  is called the *incidence vector* or *characteristic vector* of *A*.

The rule of bijection is the source of many intriguing combinatorial problems. We will see several examples in which we deduce by algebraic or other means that two sets *S* and *T* have the same size. Once we know that |S| = |T|, there exists, of course, a bijection between these sets. But it may be and often is a challenging problem to find in the aftermath a "natural" bijection based on combinatorial ideas.

**Rule of Counting in Two Ways.** *When two formulas enumerate the same set, then they must be equal.* 

This rule sounds almost frivolous, yet it often reveals very interesting identities. Consider the following formula:

$$\sum_{i=1}^{n} i = \frac{(n+1)n}{2}.$$
 (1)

We may, of course, prove (1) by induction, but here is a purely combinatorial argument. Take an  $(n + 1) \times (n + 1)$  array of dots, e.g., for n = 4:

6

**1.1 Elementary Counting Principles** 



The diagram contains  $(n + 1)^2$  dots. But there is another way to count the dots, namely by way of diagonals, as indicated in the figure. Clearly, both the upper and lower parts account for  $\sum_{i=1}^{n} i$  dots. Together with the middle diagonal this gives  $2\sum_{i=1}^{n} i + (n + 1) = (n + 1)^2$ , and thus  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ .

We even get a bonus out of it: the sum  $\sum_{i=1}^{n} i$  enumerates another quantity, the family *S* of all *pairs* in the (n + 1)-set  $\{0, 1, 2, ..., n\}$ . Indeed, we may partition *S* into disjoint sets  $S_i$  according to the *larger* element *i*, i = 1, ..., n. Clearly,  $|S_i| = i$ , and thus by the sum rule  $|S| = \sum_{i=1}^{n} i$ . Hence we have the following result: the number of pairs in an *n*-set is  $\binom{n}{2} = \frac{n(n-1)}{2}$ .

The typical application of the rule of counting in two ways is to consider incidence systems. An *incidence system* consists of two sets *S* and *T* together with a relation *I*. If *aIb*,  $a \in S$ ,  $b \in T$ , then we call *a* and *b incident*. Let d(a) be the number of elements in *T* that are incident to  $a \in S$ , and similarly d(b) for  $b \in T$ . Then

$$\sum_{a\in S} d(a) = \sum_{b\in T} d(b) \,.$$

The equality becomes obvious when we associate to the system its *incidence matrix* M. Let  $S = \{a_1, \ldots, a_m\}, T = \{b_1, \ldots, b_n\}$ , then  $M = (m_{ij})$  is the (0, 1)-matrix with

$$m_{ij} = \begin{cases} 1 & \text{if } a_i I b_j, \\ 0 & \text{otherwise.} \end{cases}$$

The quantity  $d(a_i)$  is then the *i*-th row sum  $\sum_{j=1}^{n} m_{ij}$ ,  $d(b_j)$  is the *j*-th column sum  $\sum_{i=1}^{m} m_{ij}$ . Thus we count the total number of 1's once by row sums and the other time columnwise.

**Example.** Consider the numbers 1 to 8, and set  $m_{ij} = 1$  if *i* divides *j*, denoted  $i \mid j$ , and 0 otherwise. The incidence matrix of this divisor relation looks as follows, where we have omitted the 0's:

| - | 4 | 3     | 4                                                      | 3                                                      | 0                                                     | 1                                                     | ð                                                     |
|---|---|-------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 1 | 1 | 1     | 1                                                      | 1                                                      | 1                                                     | 1                                                     | 1                                                     |
|   | 1 |       | 1                                                      |                                                        | 1                                                     |                                                       | 1                                                     |
|   |   | 1     |                                                        |                                                        | 1                                                     |                                                       |                                                       |
|   |   |       | 1                                                      |                                                        |                                                       |                                                       | 1                                                     |
|   |   |       |                                                        | 1                                                      |                                                       |                                                       |                                                       |
|   |   |       |                                                        |                                                        | 1                                                     |                                                       |                                                       |
|   |   |       |                                                        |                                                        |                                                       | 1                                                     |                                                       |
|   |   |       |                                                        |                                                        |                                                       |                                                       | 1                                                     |
|   | 1 | 1 1 1 | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

The *j*-th column sum is the number of divisors of *j*, which we denote by t(j) thus, e.g., t(6) = 4, t(7) = 2. Let us ask how many divisors a number from 1 to 8 has on *average*. Hence we want to compute  $\overline{t}(8) = \frac{1}{8} \sum_{j=1}^{8} t(j)$ . In our example  $\overline{t}(8) = \frac{5}{2}$ , and we deduce from the matrix that

How large is  $\overline{t}(n)$  for arbitrary n? At first sight this appears hopeless. For prime numbers p we have t(p) = 2, whereas for powers of 2, say, an arbitrarily large value  $t(2^k) = k + 1$  results. So we might expect that the function  $\overline{t}(n)$  shows an equally erratic behavior. The following beautiful application of counting in two ways demonstrates that quite the opposite is true!

Counting by columns we get  $\sum_{j=1}^{n} t(j)$ . How many 1's are in row *i*? They correspond to the multiples of *i*,  $1 \cdot i, 2 \cdot i, \ldots$ , and the last multiple is  $\lfloor \frac{n}{i} \rfloor i$ . Our rule thus yields

$$\overline{t}(n) = \frac{1}{n} \sum_{j=1}^{n} t(j) = \frac{1}{n} \sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor \sim \frac{1}{n} \sum_{i=1}^{n} \frac{n}{i} = \sum_{i=1}^{n} \frac{1}{i},$$

where the error going from the second to the third sum is less than 1. The last sum  $H_n = \sum_{i=1}^n \frac{1}{n}$  is called the *n*-th *harmonic number*. We know from analysis (by approximating  $\log x = \int_1^x \frac{1}{t} dt$ ) that  $H_n \sim \log n$ , and obtain the unexpected result that the divisor function, though locally erratic, behaves on average extremely regularly:  $\overline{t}(n) \sim \log n$ .

You will be asked in the exercises and in later chapters to provide combinatorial proofs of identities or recurrences. Usually, this means a combination of the elementary methods we have discussed in this section.

## Exercises

**1.1** We are given *t* disjoint sets  $S_i$  with  $|S_i| = a_i$ . Show that the number of subsets of  $S_1 \cup ... \cup S_t$  that contain at most one element from each  $S_i$  is  $(a_1 + 1)(a_2 + 1) \cdots (a_t + 1)$ . Apply this to the following number-theoretic problem. Let  $n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$  be the prime decomposition of *n* then  $t(n) = \prod_{i=1}^{t} (a_i + 1)$ . Conclude that *n* is a perfect square precisely when t(n) is odd.

▷ **1.2** In the parliament of some country there are 151 seats filled by 3 parties. How many possible distributions (i, j, k) are there that give no party an absolute majority?

**1.3** Use the sum rule to prove  $\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$ , and to evaluate  $\sum_{k=1}^{n} (n-k)2^{k-1}$ .

**1.4** Suppose the chairman of the math department stipulates that every student must enroll in exactly 4 of 7 offered courses. The teachers give the number in their classes as 51, 30, 30, 20, 25, 12, and 18, respectively. What conclusion can be drawn?

▷ **1.5** Show by counting in two ways that  $\sum_{i=1}^{n} i(n-i) = \sum_{i=1}^{n} {i \choose 2} = {n+1 \choose 3}$ .

\* \*

**1.6** Join any two corners of a convex *n*-gon by a chord, and let f(n) be the number of pairs of crossing chords, e.g., f(4) = 1, f(5) = 5. Determine f(n) by Pascal's recurrence. The result is very simple. Can you establish the formula by a direct argument?

**1.7** In how many ways can one list the numbers 1, 2, ..., n such that apart from the leading element the number k can be placed only if either k-1 or k+1 already appears? Example: 324516, 435216, but not 351246.

▷ **1.8** Let f(n, k) be the number of *k*-subsets of  $\{1, 2, ..., n\}$  that do not contain a pair of consecutive integers. Show that  $f(n, k) = \binom{n-k+1}{k}$ , and further that  $\sum_{k=0}^{n} f(n, k) = F_{n+2}$  (Fibonacci number).

**1.9** Euler's  $\varphi$ -function is  $\varphi(n) = \#\{k : 1 \le k \le n, k \text{ relatively prime to } n\}$ . Use the sum rule to prove  $\sum_{d|n} \varphi(d) = n$ .

**1.10** Evaluate  $\sum_{i=1}^{n} i^2$  and  $\sum_{i=1}^{n} i^3$  by counting configurations of dots as in the proof of  $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ .